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Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li,* S. Zhang,† L. Isenhower, and M. Saffman‡

Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
(Received 27 May 2013; published 24 July 2013)

We describe a blue-detuned optical lattice for atom trapping which is intrinsically two-dimensional, while
providing three-dimensional atom localization. The lattice is insensitive to optical phase fluctuations since it
does not depend on field interference between distinct optical beams. The array is created using an arrangement
of weakly overlapping Gaussian beams that creates a two-dimensional array of dark traps which are suitable
for magic trapping of ground and Rydberg states. We analyze the spatial localization that can be achieved and
demonstrate trapping and detection of single Cs atoms in 6- and 49-site two-dimensional arrays.
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I. INTRODUCTION

Arrays of neutral atom qubits in optical traps are being
actively developed for implementing multiqubit quantum
information processing (QIP) devices [1–4]. Far-detuned
optical traps provide strong confinement with low photon
scattering rates and low decoherence [5]. Red-detuned traps
localize atoms at a maximum of the optical intensity, which
leads to higher photon scattering rates and light shifts on
atomic levels which are used for qubit encoding and control.
Blue-detuned traps confine atoms at a local minimum of the
optical intensity. This reduces photon scattering and light shifts
and is of particular interest for experiments using Rydberg
atom excitation since blue-detuned configurations allow for
simultaneous trapping of both ground and Rydberg excited
states [6]. This capability will be important for future scalable
QIP devices based on Rydberg-state-mediated quantum gates
[7–9] as well as adiabatic approaches based on Rydberg
dressing [10] or dissipative interactions [11] which require
long-term occupancy of Rydberg states.

Projected arrays of dipole traps have been demonstrated
using either microlenses [12], holographic methods [13], or
diffractive optics [14,15]. Several experiments in recent years
have demonstrated loading of single atoms into small arrays
of optical traps [13,14] and into larger optical lattices using
either stochastic loading [16] or Bose-Einstein condensate to
Mott insulator techniques [17–19]. For QIP applications we
would like the trap array to have the following characteristics.
It should be scalable to a large number of trapping sites, two-
dimensional to minimize crosstalk from neighboring planes
of trapped atoms, and stable against trap position drifts due
to optical phase fluctuations, and, particularly for experiments
with Rydberg atoms [2], we wish to use blue-detuned traps.

Most optical lattices use interference of beams that are
counter-propagating, or co-propagating at a small angle, to cre-
ate the trap array [20]. With this approach the positions of the
trap sites are directly sensitive to optical path-length drifts in
the apparatus, causing differential phase shifts between beams.
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Although active stabilization is possible [21], this has not
been demonstrated in single-atom experiments. Alternatively,
one of the sites can be used to monitor lattice drifts [19]. A
diffractive method was demonstrated in [17], which suppresses
phase sensitivity of the lattice sites. That method provides a
two-dimensional trap array with localization out of the plane
being provided by a separate orthogonally propagating beam.

Here we propose and demonstrate an approach that is
scalable to many sites, creates an intrinsically two-dimensional
array of traps which localize the atoms in all three dimensions,
and is blue-detuned for use with Rydberg atoms. This work
builds on recent experience with atom trapping in blue-detuned
bottle beam traps (BBTs) [22–25]. A possible approach would
be to create multiple copies of a BBT using a diffractive beam
splitter (DBS). Such an array confines atoms with two trap
walls between each trapped atom. This leads to a lower density
of sites than we would like. Instead we use a DBS to create a
weakly overlapping Gaussian beam array (GBA). The atoms
are localized in the intensity minima between beams while the
overlap regions create saddle potentials which laterally trap
the atoms, as shown in Fig. 1. Localization out of the plane is
provided by diffractive spreading of the beams.

The rest of this paper is organized as follows. In Sec. II
we describe the design of the GBA and present two versions,
which we refer to as half- and full-incoherent. We also compare
the performance in terms of trap depth and localization with
that of a conventional optical lattice. In Sec. III we describe the
optical system used to create the array and in Sec. IV we show
that single atoms can be effectively trapped. We conclude with
an outlook in Sec. V.

II. GAUSSIAN BEAM ARRAY DESIGN

In this section we present the design and analysis of an
array of blue-detuned traps based on a weakly overlapping
GBA. The geometry is shown in Fig. 1. Each beam has a
waist parameter w0 (radius where the intensity is 1/e2 of the
maximum) and the array periodicity is d. We frequently use
the ratio s = d/w0 to characterize the array. We use the term
weakly overlapping to describe the situation where d > w0

and the ratio is s ∼ 2. For this value of s the overlap between
neighboring beams is significant, and indeed defines the trap
sites, while the overlap between beams separated by larger
distances is negligible.
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FIG. 1. (Color online) Intensity distribution of Gaussian beam
array in the x-y (a) and x-z (b) planes. Beams propagate along the
z axis, giving an array of traps lying in the x-y plane. The trap
array has periodicity d and forms atom traps at the center of each
four-beam plaquette where the intensity is Ic. Lateral confinement in
the x-y plane is provided by the saddles with intensity Is . Localization
normal to the x-y plane along z is provided by diffractive spreading
of the beams.

In order to suppress coherent interference between neigh-
boring beams we analyze two types of arrays. In the first, which
we call half-incoherent, neighboring beams have orthogonal
polarizations so we can add their intensities when calculating
the trap depth. This statement is based on the assumption that
the beams are far detuned from the nearest atomic resonance
so that vector and tensor contributions to the ground-state
polarizability are negligible. The remaining field interference
terms are between beams on the diagonal of a unit cell. Their
separation is

√
2d, whereas neighboring beams are separated

by only d, so the interference term along the diagonal is
strongly suppressed compared to neighboring beams separated
by d. Nevertheless, the sensitivity to phase variations between
beams can lead to variations in the trap intensity at the center
of each unit cell.

The second type of array, which we call full-incoherent,
effectively removes the residual phase sensitivity of the
half-incoherent array. In this case we use a combination of
orthogonal polarizations and different laser frequencies so that
there is no field interference between neighbors or between
diagonal neighbors. As long as the frequency difference is
large compared to the trap vibrational frequencies, we can
treat the array potential as being due to the incoherent sum of
the beams. The remaining field interference effects are due to

beams separated by 2d or more, and for our parameters these
terms are negligible.

For both the half-incoherent and the full-incoherent arrays
the use of different polarizations and frequencies also serves
an additional purpose. If the entire array were due to a
uniformly polarized coherent field, the Talbot effect would
lead to multiple copies of the array along the normal z axis.
This would allow for trapping in multiple planes and we would
not have a two-dimensional array of traps. The half- and
full-incoherent designs effectively suppress the Talbot effect
and we get a single plane of traps.

A. Half-incoherent array

Consider a unit cell as shown in Fig. 1 with neighboring
beams having orthogonal polarization states. At the saddle
point along each side of the unit cell the intensity is approxi-
mately

Is = 2I0e
−2(d/2)2/w2

0 = 2I0e
−d2/2w2

0 , (1)

where I0 is the peak intensity of one beam. If diagonally
opposite beams are in phase (this is the worst case, giving
the lowest trapping potential), the intensity at the center of the
unit cell where an atom is trapped is approximately

Ic = 2I0
(
2e−(d/

√
2)2/w2

0
)2 = 8I0e

−d2/w2
0 . (2)

In Eqs. (1) and (2) we neglect contributions from farther-away
beams in neighboring unit cells; for the saddle intensity we
only account for the two nearest beams, and for the center
intensity we account for all four beams in one unit cell.

The trap depth is proportional to the difference between
these two intensities, which is

It = Is − Ic = I02e−s2/2
(
1 − 4e−s2/2

)
. (3)

Figure 2(a) shows the trap depth as a function of s. The trap
depth has a maximum at s0 = (2 ln 8)1/2 � 2.04. Using s = s0

we find Is = I0/4, Ic = I0/8, and It = I0/8.

We are most interested in the trap depth as a function
of w0 for a fixed optical power and fixed lattice period d.
Defining the average intensity in a unit cell of area d2 as

s=d/w0
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FIG. 2. (Color online) Normalized trapping depth [solid (red) curve] and intensity at trap center [dashed (blue) curve] versus normalized
array period for half-incoherent array. Variation at constant peak intensity I0 (a) and at constant average intensity Id (b).
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Id = P
d2 = πw2

0I0

2d2 = πI0
2s2 , the trap intensity is

It = Id × 4s2e−s2/2

π

(
1 − 4e−s2/2

)
. (4)

Figure 2(b) shows the trap depth, which reaches a maximum of
It/Id = 0.35 at s = 2.19. Note that the calculated trap depth
in Fig. 2 is based on a worst-case assumption. If the diagonal
beams were out of phase, we would get Ic = 0 and the peak
trap depth would be about twice as large. It can also be verified
that contributions from farther-away beams have a negligible
impact on the plots in Fig. 2.

In addition to the trap depth, it is important to know
the spatial localization and oscillation frequencies. Using the
approximation of the potentials at the trap center given in [6]
we get the effective spring constants

κx = 32|Ud |
πd2

s4(s2 − 2)e−s2
, (5a)

κy = κx, (5b)

κz = 32λ2|Ud |
π3d4

s6(s2 − 1)e−s2
, (5c)

with Ud = α
2ε0c

Id ; α is the atomic polarizability in SI units,
and λ is the wavelength of the trapping light. The x axis is
directed from the trap center towards a neighboring side. The
corresponding oscillation frequencies are ω = √

κ/ma , with
ma the atomic mass.

The time-averaged position variances are found from
1
2κjσ

2
j = 1

2κj 〈r2
j 〉 = 1

2kBT , with T the atomic temperature.
They are

σ 2
x = πkBT

32|Ud |
es2

s2(s2 − 2)
w2

0 = σ 2
x0

es2

s4(s2 − 2)
, (6a)

σ 2
y = σ 2

x , (6b)

σ 2
z = πkBT

32|Ud |
es2

s2(s2 − 1)
L2

R = σ 2
z0

es2

s6(s2 − 1)
, (6c)

with σx0 = (πd2kBT
32|Ud | )1/2 and σz0 = (π3d4kBT

32λ2|Ud | )1/2. The optimal
confinement values are σx = 1.31 σx0 at s = 2 and σz =
0.53 σz0 at s = ( 5+√

13
2 )1/2 � 2.07. Figure 3 shows the depen-

dence of confinement on the parameter s.

B. Full-incoherent array

If we use two laser frequencies, we can arrange for all
neighboring beams, both along an edge and across a diagonal
of a unit cell, to combine incoherently. An optical layout which
implements this is shown in Sec. III. For this arrangement the
saddle and center intensities are

Is = 2I0e
−s2/2 (7)

and

Ic = 4I0e
−2(d/

√
2)2/w2

0 = 4I0e
−s2

. (8)

Compared with (1) and (2) we see that the saddle intensity is
unchanged, but the intensity at the center is reduced by a factor
of 2. Reduction of the center intensity increases the trap depth
and, also, eliminates the phase dependence, which would lead
to unwanted structure near the center of the trap.

The trap depth is

It = I0 × 2e−s2/2
(
1 − 2e−s2/2

)

= Id × 4s2e−s2/2

π

(
1 − 2e−s2/2). (9)

Figure 4 shows the trap depth as a function of s. The maximum
of It/Id = 0.51 occurs at s = 1.92. For the same average
intensity the full-incoherent array has an approximately 30%
larger trap depth than the half-incoherent array.

Following the same steps as for the half-incoherent array,
we find for the spring constants and spatial localization

κx = 32|Ud |
πd2

s4(s2 − 1)e−s2
, (10a)

κy = κx, (10b)

κz = 16λ2|Ud |
π3d4

s8e−s2
(10c)

and

σ 2
x = σ 2

x0
es2

s4(s2 − 1)
, (11a)

σ 2
y = σ 2

x , (11b)

σ 2
z = σ 2

z0
2es2

s8
. (11c)
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FIG. 3. (Color online) Standard deviation of x position (a) and z position (b) for a half-incoherent array (dashed curves) and full-incoherent
array (solid curves). Vertical lines are at the s values for which the trap depths are maximized. Parameters are λ = 0.78 μm, d = 3.6 μm,
T = 10 μK, and Ut = kB × 300 μK.
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FIG. 4. (Color online) Normalized trapping depth (solid curve)
and intensity at trap center (dashed curve) versus normalized array
period for full-incoherent array. The plot assumes constant average
intensity Id .

The optimal confinement values are σx = 1.04 σx0 at s =√
2 + √

2 � 1.85 and σz = 0.65 σz0 at s = 2.

Comparing the half- and full-incoherent arrays we see
that the full-incoherent case has a better trap depth and
transverse localization for the same optical power. The axial
localization is worse for the full-incoherent array, but this is a
less important figure of merit than the transverse localization
when addressing beams that propagate along z. We conclude
that the full-incoherent array should give a somewhat better
performance for qubit control and, also, is less sensitive to
parasitic light scattering and optical imperfections.

C. Comparison with optical lattice

The spatial average of the intensity in a unit cell Id is related
to the effective trapping intensity It by

I hi
t = Id × 4s2e−s2/2

π

(
1 − 4e−s2/2

)
, (12)

I fi
t = Id × 4s2e−s2/2

π

(
1 − 2e−s2/2

)
, (13)

where hi and fi stand for half- and full-incoherent, respec-
tively. The maximum optical efficiency is (It/Id )hi = 0.35
and (It/Id )fi = 0.51. These ratios can be compared with a
traditional optical lattice formed by interfering plane waves.
The comparison depends on the dimensionality and type of
optical lattice. For the simplest case of a one-dimensional
lattice the effective trapping intensity is the difference between
the maximum and the minimum intensities, which is twice
the average intensity for a sinusoidal lattice. Thus the full-
incoherent GBA implementation has a relative efficiency of at
best 0.51/2 = 25.5%.

The GBA appears to be more favorable when we consider
the performance in three dimensions. We consider two types
of coherent lattice. A standard counterpropagating geometry
uses three beams, each retroreflected to create a d = λ/2
lattice period in all three dimensions. The power required
is 3 times P1, the power of each beam, so the intensity
averaged over a unit cell is Id = 3P1/(λ/2)2 = 12P1/λ

2.

The trap depth is It = 4I1 so It/Id = λ2I1/3P1, and putting

I1 = P1/(λ/2)2 we get It/Id = 4/3. The GBA has a relative
efficiency of 0.51/(4/3) = 39%. It is also possible to create
longer period lattices by interfering pairs of beams at an acute
angle θ < π as in [16]. In this case It = 4I1 = 4P1/d

2, Id =
6P1/d

2, and It/Id = 2/3. The GBA has a relative efficiency
of 0.51/(2/3) = 78%.

We see that the GBA has a lower efficiency than a standard
optical lattice. The benefit is the absence of phase sensitivity
as regards the position of the trap sites as well as the ability to
project the lattice onto the atomic sample using optical access
from a single side.

III. OPTICAL IMPLEMENTATION

A straightforward approach to creating an array of Gaussian
beams is to start with a single laser beam and use a Dammann
grating [26] to replicate the beam. Gratings that can create
several hundred equal-intensity beams are readily available
commercially. Unfortunately, a single Dammann grating does
not work well for creating an array of overlapping beams.
The diffractive spreading angle of a Gaussian beam of waist
w0 is θd = λ/πw0. The angular separation of the beams from
a grating of period 
 is θg = λ/
. In order to achieve s =
d/w0 � 2, which we identified in the previous section as the
optimal spacing, we need θg/θd � 2. However, this implies
that θg/θd = πw0/
 � 2 or 
 � π

2 w0. In other words, the
grating period is comparable to the waist of the Gaussian beam
illuminating the grating. In this regime standard Dammann
gratings do not perform well and lead to large distortions of
the diffracted spot array. Our tests show that the beam quality
after the grating is good when s � 4.

While it should be possible to design a custom grating
that works well for this application, we have instead used
a Dammann grating with 
 � πw0, giving s = 4, followed
by beam displacement optics as shown in Fig. 5, to reduce
the beam spacing to s = 2. The calcite beam displacement
elements serve the additional function of giving neighboring
beams orthogonal polarizations for the array designs described
above.

We have implemented a half-incoherent GBA as shown
in Fig. 6. A single TEM00 Gaussian beam is divided on a

diffractive
beam splitter

  calcite 
displacer

  calcite 
displacer

FIG. 5. (Color online) Making a half-incoherent array with a
Dammann grating and calcite displacers. The illustration shows
creation of a 16-beam array with six trapping sites. Arrows indicate
the direction of linear polarization of each beam.
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FIG. 6. (Color online) Optical system for creating a half-
incoherent GBA with six trapping sites. The intensity image shows the
array before focusing onto the atoms with parameters λ = 0.78 μm,
d = 250 μm, w0 = 120 μm, and s = 2.1. The 780-nm source is
based on a frequency-doubled, single-frequency, 1560-nm laser.

Dammann grating, which we refer to as a DBS (Holo/Or MS-
248-X-Y-A). The grating is placed in the front focal plane of
a lens to create an array of four parallel beams with separation
d = 500 μm and s � 4.2. The pin-hole array suppresses all
non-first-order beams from the DBS. This is then followed by
two pieces of calcite. The first, thicker piece, C1, is cut to give
a lateral displacement of 500/

√
2 = 354 μm. This is followed

by a second, thinner calcite, C2, rotated by 45◦ relative to
C1, which gives a displacement of 500/2 = 250 μm. The
net result is an array with d = 250 μm and s � 2.1, with
neighboring beams having orthogonal linear polarizations. An
implementation of this design to create 16 beams and six trap
sites is shown in Fig. 6. The 16-beam array is then imaged onto
a cloud of cold Cs atoms in a Pyrex cell with a multielement
NA = 0.4 lens that is designed to compensate for cell wall
aberrations to give diffraction limited focusing. The lattice
spacing at the atoms is d = 3.8 μm.

We have also implemented the full-incoherent array design,
where the nearest-neighbor beams come from two different
laser sources (or are shifted in frequency by acousto-optic
modulators) and the next-nearest neighbors have different po-
larizations. The scheme of the optical realization is presented
in Fig. 7. Two separated arms create 4 × 4 Gaussian arrays that
are combined using a polarizing beam splitter (PBS). Finally,
this array is shifted by a single calcite to create a 64-beam
array with 49 trapping sites. The other parameters for the trap
array are similar to those for the half-incoherent case described
above.

IV. ATOM TRAPPING DEMONSTRATION

We have demonstrated that both the half- and the full-
incoherent arrays described above are suitable for trapping
of cold Cs atoms. We use a double magneto-optical trap
(MOT) apparatus with a two-dimensional MOT feeding a
three-dimensional MOT in a differentially pumped Pyrex
vacuum cell. We load the GBA from the three-dimensional
MOT, which is based on a standard six-beam configuration.
The MOT is cooled to 10–20 μK with 10 ms of polarization
gradient cooling (PGC), giving number densities of ∼2 ×
109 cm−3. The 780-nm trapping light is switched on at the
beginning of the PGC phase when the atomic density is highest,
and at the end of the loading phase all MOT and PGC light
is switched off to allow the atoms that are not trapped to fall

PM 
fiber

DBS   
λ/2

pin-hole
array

780 nm SHG
source

DBS
calcite/2λ PBSL1 L2

L1

L

L

PM 
fiber

780 nm Ti:Sa
source

pin-hole
array

FIG. 7. (Color online) Experimental setup for creating a full-
incoherent GBA with 49 trapping sites. Two 4 × 4 arrays created
by diffractive elements (DBS) are combined by a polarizing beam-
splitter (PBS). Lenses L1 and L2 create a 1:1 telescope to image the
arrays onto the calcite that combined them into a 64-beam array.
Pin-hole arrays are placed in the foci of lenses (L) to block unwanted
zeroth and higher orders of diffraction from the DBS. The spatial
parameters of the resulting array are the same as in Fig. 6.

away. The MOT and GBA loading takes about 0.7 s. Trapped
atoms are detected by turning on the PGC light and imaging
the scattered fluorescence onto an electron multiplying charge-
coupled device (EMCCD) camera. The 852-nm fluorescence
is collected through the same lens used to project the GBA onto
the atoms and separated with a dichroic filter from the 780-nm
trapping light. Typical detection parameters are detuning of
−39 MHz = −7.5γ from the 6s1/2, f = 4 ↔ 6p3/2, f = 5
transition with I � 2.7Isat, where Isat is the saturation intensity,
and scattered light is collected for 50 ms. EMCCD exposure
times as short as 5 ms are sufficient to resolve single-atom
signals.

A. Half-incoherent array

We first describe results using the six-site half-incoherent
array. The trap depth is calculated from Eq. (3). For Cs atoms
at a trap-light wavelength of 780 nm the scalar polarizability
is α

cgs
0 = −240 × 10−24 cm3. We transmit 3 W of 780-nm

light through a single-mode polarization maintaining fiber. The

ev
en

ts

0

100

200

300

photoelectrons

(a)
(b)

0 500 1000

2086 2913
58.3%

FIG. 8. (Color online) Fluorescence image (a) and atom number
histogram (b) in the six-site half-incoherent array. The image is an
average of 105 of 5000 events where all six sites loaded a single atom.
Each pixel is 0.63 × 0.63 μm2. The atom number histogram has 5000
events taken from one of the six sites showing clear separation of the
zero-atom background from the one-atom peak. The solid line is a
Poissonian model fitted to the one-atom peak.
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FIG. 9. (Color online) Parametric heating measurement of trap
frequencies.

optical efficiency from the fiber end to the atoms including the
array generation and subsequent relay and focusing optics is
about 50%. With a power of 1.5 W at the atoms divided into 16
beams we achieve trap depths of ∼ 830 μK in an array with
d = 3.8 μm and s = 2.1. The array period is longer than is
common in many optical lattice experiments and is chosen
to be compatible with magic trapping of high-n Rydberg
states [6]. The close-to-4-μm trap spacing also facilitates ad-
dressing single sites using laser beams focused to few-micron
waists [14].

Figure 8 shows fluorescence images of the trapped atoms
and a histogram of single-atom events. In the histogram the
single-atom signal is clearly seen, with the loading rate varying
from 50% to 60% between sites. The average loading rate
is 52.5%, which is sub-Poissonian, and also slightly above
that expected from light-assisted two-body loss, or collisional
blockade [27]. We do not observe any events with two or more
atoms in the trap, although we cannot exclude the possibility
that we load two atoms but lose them rapidly during the
fluorescence imaging exposure.

To compare the trap depth with theoretical calculations
we measured the trap oscillation frequencies. Equations (5)
give the frequencies as ωx = 2π × 39 kHz and ωz = 2π ×
6.4 kHz. To measure the trap oscillations the intensity of
the trapping light was modulated at frequency f . When

the frequency matches 2ω0/2π the atoms will be heated
and leave the trap. After we confirmed the initial pres-
ence of an atom in the trap site the modulation was
applied for 100 ms for f < 35 kHz and for 5 ms for
f > 35 kHz. Then we took a second image to measure
the retention of the atom in the trap. For each modulation
frequency the measurement was repeated 200 times. The
observed spectrum for one of the traps is presented in
Fig. 9.

Two resonances can be easily identified: one around
18 kHz, corresponding to ωz/2π = 9 kHz (axial frequency)
and a broader resonance centered at 90 kHz (ωx/2π =
45 kHz). The radial frequency agrees to about 10% with
that calculated based on our known trap geometry and optical
power. The axial frequency is about 50% higher than expected.
We have observed that individual focused beams in the array
do not have an ideal Gaussian profile and diverge more
rapidly than for a Gaussian with the same waist parameter;
i.e., the beam quality factor is M2 > 1. This fast divergence
has a minimal effect on the radial trap frequencies but will
increase the axial frequencies, which is consistent with our
observations.

For future experiments with qubits we wish the traps
to be well aligned on a regular grid. Fits to the image in
Fig. 8 reveal an average spacing of d = 3.90 μm, close to the
expected 3.8 μm. We find a maximum deviation of the atomic
centroids from a regular grid of ∼0.6 μm. This deviation
is very sensitive to optical alignment and we attribute this
to the residual influence of interference between diagonally
separated beams in each unit cell. The lifetime of atoms in
the traps is measured with all light switched off except for
the 780-nm trapping light. Measured 1/e lifetimes range from
3.7 to 11 s for the different sites. The lifetime limit due to
collisions with untrapped background gas was measured to be
∼20 s using a several-millikelvin-deep, red-detuned, single-
beam trap formed with 1040-nm light. We attribute the shorter
lifetimes in the GBA to the lower trap depth and, possibly,
imperfections in the trap potentials. As with the deviations in
the atomic centroids we find the lifetimes to be very sensitive
to adjustment of the alignment in the array-forming optics.
Due to the sensitivity to optical alignment we have studied the
performance of the full-incoherent array as described in the
following.
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FIG. 10. (Color online) Atom trapping in a 49-site full-incoherent array. (a) Distribution of number of occupied sites with fluorescence
image. The fluorescence image is an average over 100 atom loading shots, with noise filtered by performing a principal-component analysis on
the data set and combining the 49 components with the highest eigenvalues to form the image. (b) Histogram from one of the sites, showing a
59.7% single-atom loading rate. The solid line is a Poissonian model fitted to the one-atom peak.
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FIG. 11. (Color online) Stark shift of the 6s1/2, f = 4 ↔
6p3/2, f = 5 transition in the 49-site array. Inset: Atom blow-away
curve as the laser frequency is scanned.

B. Full-incoherent array

Atom trapping in the 49-site full-incoherent array is shown
in Fig. 10. For these experiments we used two separate 780-nm
laser systems: the frequency-doubled 1560-nm source used for
the half-incoherent array experiments and a single-frequency
Ti:Sa laser, also operating near 780 nm. The two laser systems
were adjusted to have wavelengths within 1 nm of each other.
The optical efficiency for the setup in Fig. 7 from the fiber ends
to the atoms including the array generation and subsequent
relay and focusing optics is about 60%. The trap depth is
given by Eq. (9). With a power of 2.5 W out of each fiber
we projected a total of 3 W onto the atoms, giving 47 mW
in each of the 64 beams. This resulted in a trapping potential
of ∼570 μK in an array with d = 3.8 μm and s = 2.1. Atom
trapping was observed with a potential as low as ∼340 μK.
The data presented below were all taken with ∼570-μK-deep
traps. Figure 10 shows a fluorescence image of the array with
a single-atom loading histogram. The average atom lifetime
in the array was about 1.5 s. Single-atom exposure parameters
were the same as for the half-incoherent array.

We see that the average number of occupied sites in each
loading event is approximately 22/49 = 45% of the array size.
Single atoms are loaded into all sites, although about five sites
have substantially lower loading rates than the average and
about five sites have loading rates above 60%. We believe
the loading rate could be further improved at all sites using
the technique of repulsive light-assisted collisions [28]. The
regularity of the atomic positions is significantly better in
this array than in the half-incoherent method. Fitting the
fluorescence image to a regular grid we find that the average
deviation of the atomic centroids from a regular grid is about
0.35 μm, which is close to half the deviation seen in the
half-incoherent array.

An important consideration for qubit experiments is that
trap-induced Stark shifts on atomic transitions used for state
control are uniform across the array. The trapping sites in the
GBA are not perfectly dark; there is a nonzero intensity Ic at
the center of each trap. This is intentional and is beneficial
for correct magic trapping of ground-Rydberg state transitions
[6]. We have verified the uniformity of the intensity Ic at
each site by scanning across the 6s1/2, f = 4 ↔ 6p3/2, f =
5 transition with a 5-μs pulse from a single unbalanced
beam to blow away the atoms. The data in Fig. 11 show a
mean transition Stark shift relative to the value for an atom
outside the lattice of −6.7 MHz, with a standard deviation of
0.8 MHz. The typical fractional deviation of the Stark shift
is thus 0.8/6.7 = 12%. From Eqs. (8) and (9) the intensity
at trap center is related to the effective trapping intensity by
Ic/It = 2e−s2/2(1 − 2e−s2/2), giving Ic/It = 0.17 at s = 2.1.
The average light shift of the ground state at trap center is
thus 0.17 × 570 μK = 97 μK, with a standard deviation of
about 10 μK.

The site-to-site shifts may come into play when we consider
dephasing of qubits encoded in the f = 3,4 hyperfine clock
states, which have a transition frequency of 0.0092 THz. At
our detuning of 72 nm (32.5 THz) from the Cs D2 transition
the standard deviation of the clock frequency across the array
due to trap-induced Stark shifts is approximately 10 μK ×

0.0092
0.0092+32.5 = 0.0028 μK or ∼60 Hz. If left uncompensated,
this would cause dephasing of qubits in different sites on a
time scale of a few milliseconds. With good laser stabilization
these shifts will be static and it is possible to keep track of them.
Alternatively, much longer coherence times should be possible
using additional plane-wave optical fields to compensate the
differential Stark shift [29].

V. CONCLUSIONS

In summary, we have designed and demonstrated a two-
dimensional optical trap array using weakly overlapping
Gaussian beams. Single Cs atoms are loaded into the array with
an approximately 45% average filling factor. High-fidelity de-
tection of single atoms is achieved using fluorescence imaging.
The moderately large spacing and blue-detuned character of
the array make it well suited for demonstrating quantum gates
with Rydberg-state-mediated interactions. Results of quantum
gate experiments in the array using microwave and optical
fields for state control will be reported elsewhere.

ACKNOWLEDGMENTS

This work was supported by the IARPA MQCO program
through ARO Contract No. W911NF-10-1-0347 and by
DARPA.

[1] D. Meschede and A. Rauschenbeutel, Adv. At. Mol. Opt. Phys.
53, 75 (2006).

[2] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82,
2313 (2010).

[3] A. Negretti, P. Treutlein, and T. Calarco, Quant. Info. Proc. 10,
721 (2011).

[4] M. Schlosser, S. Tichelmann, J. Kruse, and G. Birkl, Quant.
Info. Proc. 10, 907 (2011).

013420-7

http://dx.doi.org/10.1016/S1049-250X(06)53003-4
http://dx.doi.org/10.1016/S1049-250X(06)53003-4
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1007/s11128-011-0291-5
http://dx.doi.org/10.1007/s11128-011-0291-5
http://dx.doi.org/10.1007/s11128-011-0297-z
http://dx.doi.org/10.1007/s11128-011-0297-z


M. J. PIOTROWICZ et al. PHYSICAL REVIEW A 88, 013420 (2013)

[5] R. A. Cline, J. D. Miller, M. R. Matthews, and D. J. Heinzen,
Opt. Lett. 19, 207 (1994).

[6] S. Zhang, F. Robicheaux, and M. Saffman, Phys. Rev. A 84,
043408 (2011).
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